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The weighted orthonormality relations for many-particle Sturmian basis functions are
derived both in momentum space and in position space. It is shown that when these functions
are used as a basis, the kinetic energy term disappears from the Schrödinger equation.
A general method is developed for constructing many-electron Sturmian basis sets from one-
electron Sturmians. This method is illustrated by applications to atoms and ions and to the H2

molecule. It is shown that the direct solution of the Schrödinger equation using many-particle
Sturmian basis functions offers a useful alternative to the Hartree–Fock approximation and
configuration interaction; and it is shown that the Sturmian method leads to an automatic
optimization of the orbital exponents.

1. Introduction

Sturmian basis functions are solutions for the Schrödinger equation for some
easily-solved potential, V0(x), where the potential is weighted by a factor, βν , espe-
cially chosen in such a way as to make all of the basis functions in the set correspond
to the same energy, regardless of their quantum numbers. Schull and Löwdin [24],
who introduced single-electron hydrogenlike Sturmian basis functions into quantum
chemistry, did so because these functions are complete without the inclusion of the
continuum. The name “Sturmian” was introduced by Rotenberg [23] in order to em-
phasize the connection with Sturm–Liouville theory. Weniger [26] has studied the
orthonormality and completeness properties of Sturmian basis sets and shown that
such a set forms the basis of a Sobolev space. The present paper will discuss the
many-particle generalization of Sturmian basis sets [9]. We shall make use of the
momentum-space representations of these functions, as well as their position-space
representations; and therefore we begin by writing the many-particle the Schrödinger
equation in momentum space in terms of the mass-weighted coordinates of an N -
particle system.

2. The momentum-space Schrödinger equation

Let eip·x be a d-dimensional plane wave defined by

eip·x ≡ ei(p1x1+···+pdxd), (1)
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where x1, . . . ,xd are the d = 3N mass-weighted Cartesian coordinates of the particles
in an N -particle system. Then we can write

ψ(x) =
1

(2π)d/2

∫
dp eip·xψt(p),

ψt(p) =
1

(2π)d/2

∫
dx e−ip·xψ(x), (2)

where

ψ(x)≡ψ(x1, . . . ,xd),

ψt(p)≡ψt(p1, . . . , pd),

dx≡ dx1 dx2 . . . dxd,

dp≡ dp1 dp2 . . . dpd. (3)

If atomic units are used, the position-space Schrödinger equation can be written in the
form [

−∆ + p2
0 + 2V (x)

]
ψ(x) = 0, (4)

where

p2
0 ≡ −2E (5)

and where ∆ is the generalized Laplacian operator

∆ ≡
d∑
j=1

∂2

∂x2
j

. (6)

Substituting (2) into (4), we obtain∫
dp eip·x [p2 + p2

0 + 2V (x)
]
ψt(p) = 0. (7)

If we now multiply (7) by e−ip′·x and integrate over the particle coordinates, we have

(2π)d
∫

dp δ(p− p′)
(
p2 + p2

0

)
ψt(p)

+ 2
∫

dp
∫

dx ei(p−p′)·xV (x)ψt(p) = 0, (8)

which can be rewritten in the form(
p′2 + p2

0

)
ψt(p′) = − 2

(2π)d/2

∫
dp V t(p′ − p)ψt(p), (9)

where

V t(p) ≡ 1
(2π)d/2

∫
dx e−ip·xV (x). (10)

Equation (9) is the momentum-space form of the Schrödinger equation.
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3. Sturmian basis functions

Suppose that we have two solutions of the position-space Schrödinger equation
for some potential, V0(x), so that[

∆− p2
0

]
φν(x) = 2βνV0(x)φν (x),[

∆− p2
0

]
φ∗ν′(x) = 2β∗ν′V0(x)φ∗ν′(x), (11)

where ν stands for a set of quantum numbers labeling the solutions to (11). Here
βν is a weighting factor, chosen in such a way that both solutions correspond to the
same value of p0 and hence the same energy, although their quantum numbers may be
different. If we multiply the two equations respectively by φ∗ν′(x) and φν (x), integrate
over the coordinates, take the difference between the two equations, and make use of
the Hermiticity of the operator ∆− p2

0, we obtain [18]

0 =
(
β∗ν′ − βν

) ∫
dxφ∗ν′(x)V0(x)φν (x). (12)

Thus βν must be real, and whenever βν′ 6= βν , the two Sturmian functions are orthogo-
nal with respect to potential-weighted integration over the coordinates. It is convenient
to normalize our Sturmian basis sets in such a way that∫

dxφ∗ν′(x)V0(x)φν (x) = − p
2
0

βν
δν′,ν . (13)

This special normalization is convenient because it leads to momentum-space ortho-
normality relations of the form∫

dp

(
p2

0 + p2

2p2
0

)
φ∗tν′(p)φtν(p) = δν′,ν (14)

regardless of the dimension of the space. To show that (14) follows from (13) we first
use the d-dimensional Fourier convolution theorem to rewrite the momentum-space
Schrödinger equation (9) in the form(

p2
0 + p2)ψt(p) = − 2

(2π)d/2

∫
dx eip·xV (x)ψ(x). (15)

The Sturmian basis functions φν(x) and their Fourier transforms φtν(p) will thus be
solutions of (

p2
0 + p2)φtν (p) = − 2βν

(2π)d/2

∫
dx eip·xV0(x)φν (x) (16)

so that [
V0(x)φν (x)

]t
= − 1

2βν

(
p2

0 + p2)φtν (p). (17)
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We also know that the scalar product of two functions in position space is equal
to the scalar product of their Fourier transforms in momentum space, so that

− p
2
0

βν
δν′,ν =

∫
dxφ∗ν′(x)V0(x)φν (x)

=

∫
dp
[
φ∗ν′(x)

]t[
V0(x)φν (x)

]t
=−

∫
dp φt∗ν′(p)

(p2
0 + p2)
2βν

φtν(p). (18)

Multiplying (18) by −βν/p2
0, we obtain (14). The meaning of the orthonormality

relations, (13) and (14), requires a further comment: Since we are dealing with a
many-dimensional space, ν represents a set of quantum numbers rather than a single
quantum number. Orthogonality with respect to the quantum number (or numbers) on
which βν depends (the “grand principal quantum number(s)”) follows automatically
from (12), i.e., Sturmian basis functions corresponding to different values of βν are
necessarily orthogonal; but orthogonality with respect to the minor quantum numbers
must be constructed or proved in some other way, for example by symmetry arguments.

4. Sturmian expansion of a plane wave; Elimination of the kinetic energy

The expansion of a plane wave in terms of single-particle hydrogenlike Sturmian
basis functions and their Fourier transforms was first derived by Shibuya and Wulfman
[25,26]. Later Aquilanti and his co-workers generalized this expansion to many-particle
Sturmians [1,2]. The derivation of the d-dimensional expansion, which makes use of
the weighted momentum-space orthonormality relation, is as follows: If we let

eip·x =

(
p2

0 + p2

2p2
0

)∑
ν′

φtν′(p)aν′(x) (19)

then the coefficients in the expansion, aν′(x), can be determined by multiplying on the
left by φt∗ν (p) and integrating over dp. This yields

aν(x) =

∫
dp eip·xφt∗ν (p) = (2π)d/2φ∗ν(x) (20)

so that

eip·x = (2π)d/2
(
p2

0 + p2

2p2
0

)∑
ν

φtν(p)φ∗ν (x). (21)

If we substitute this expansion into (15) and cancel p2
0+p2 from both sides, we obtain a

form of the Schrödinger equation in which the the kinetic energy term has disappeared:

ψt(p) =− 1

p2
0

∑
ν

φtν(p)
∫

dxφ∗ν (x)V (x)ψ(x),
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ψ(x) =− 1
p2

0

∑
ν

φν (x)
∫

dx′ φ∗ν(x′)V (x′)ψ(x′). (22)

If the wave function is expanded in terms of the Sturmian basis functions, so that
ψ(x) =

∑
ν φν(x)Bν , then, substituting the expansion into (22), we find that the

expansion coefficients and p0 must satisfy the secular equation∑
ν

[
Tν′,ν − p0δν′,ν

]
Bν = 0, (23)

where

Tν′,ν ≡ −
1
p0

∫
dxφ∗ν′ (x)V (x)φν (x). (24)

For systems interacting through Coulomb forces, Tν′,ν is independent of p0.
Notice that the eigenvalues of the Sturmian secular equation (23) are not values of
the energy but values of the parameter p0, which is related to the binding energy of
bound states by equation (5). The Sturmian secular equation (23), from which the
kinetic energy term has vanished, can be derived on another way: If we begin with
the position-space Schrödinger equation and expand the wave function in terms of a
set of solutions of equation (11), we obtain∑

ν

[
−∆ + p2

0 + 2V (x)
]
φν (x)Bν = 0. (25)

Since the Sturmian basis functions, φν(x), are solutions of (11), equation (25) can be
rewritten in the form ∑

ν

[
− βνV0(x) + V (x)

]
φν (x)Bν = 0, (26)

we now multiply (26) on the left by φ∗ν′(x) and integrate over the coordinates, making
use of the orthonormality relation shown in equation (13):∑

ν

[
p2

0δν′,ν +

∫
dxφ∗ν′ (x)V (x)φν (x)

]
Bν = 0. (27)

With the definition of Tν′,ν given in (24), equation (27) reduces to the Sturmian secular
equation (23).

5. Construction of many-electron Sturmians

If we let xj represent the Cartesian coordinates of the jth electron in an N -
electron system, and if V0(x) is an external potential, then

V0(x) =
N∑
j=1

v(xj ), (28)
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where v(xj) is the potential experienced by a single electron. Suppose that we know
a set of functions, χµ(x) which satisfy one-electron equations of the form[

∆j − k2
µ

]
χµ(xj ) = 2bµkµv(xj )χµ(xj ), (29)

where

∆j ≡
∂2

∂x2
j

+
∂2

∂y2
j

+
∂2

∂z2
j

(30)

so that
N∑
j=1

∆j = ∆, (31)

and let us suppose that the parameters kµ and bµ are chosen in such a way that

k2
µ + k2

µ′ + k2
µ′′ + · · · = p2

0 (32)

and

kµbµ = βν . (33)

Then

φν(x) = χµ(x1)χµ′(x2) · · ·χµ′′(xN ) (34)

will satisfy [
∆− p2

0

]
φν(x) = 2βνV0(x)φν (x) (35)

with

p2
0 = β2

ν

(
1
b2
µ

+
1

b2
µ′

+
1

b2
µ′′

+ · · ·
)

(36)

or, expressed in a different way,

βν = p0

(
1
b2
µ

+
1

b2
µ′

+
1

b2
µ′′

+ · · ·
)−1/2

(37)

and

kµ =
p0

bµ

(
1
b2
µ

+
1

b2
µ′

+
1

b2
µ′′

+ · · ·
)−1/2

. (38)

This gives us a prescription for constructing many-electron Sturmians provided
we are able to solve the single-electron Schrödinger equation (29), and provided that
the parameters kµ and bµ satisfy the subsidiary relations (32) and (33). Antisym-
metrized products of functions of the form shown in equation (34) will, of course, also
satisfy (35).
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6. N -electron atoms

As an illustrative example, we can consider the ground states and excited states
of N -electron atoms in the approximation where the nucleus is assumed to be infinitely
heavy. In this example,

v(xj ) = −Z
rj

, (39)

where Z is the nuclear charge, and where rj is the distances the jth electron from the
nucleus. We next let

χnlm,+1/2(xj) =Rnl(rj)Ylm(θj ,φj)α(j),

χnlm,−1/2(xj) =Rnl(rj)Ylm(θj ,φj)β(j), (40)

where

Rnl(rj) =Nnl(2knrj)le−knrjF
(
l + 1− n|2l + 2|2knrj

)
,

Nnl =
2k3/2
n

(2l + 1)!

√
(l + n)!

n(n− l − 1)!
, (41)

and where F (a|b|c) is a confluent hypergeometric function. The functions χnlms(xj)
are one-electron hydrogenlike Sturmians, and they can be shown to obey the following
equations: [

∆j − k2
n

]
χnlms(xj) = 2

(
nkn
Z

)(
−Z
rj

)
χnlms(xj), (42)

∫
dτj
∣∣χnlms(xj )∣∣2(−Z

rj

)
= − k2

n

(nkn/Z)
(43)

and ∫
dτj
∣∣χnlms(xj )∣∣2 = 1, (44)

where
∫

dτj stands for integration over the space coordinates and summation over
the spin coordinates of the jth electron. Within the set of one-electron hydrogenlike
Sturmians corresponding to a particular value of βν , an additional orthonormality
relation holds: ∫

dτj χ
∗
nlms(xj)χn′l′m′s′(xj ) = δn′nδl′lδm′mδs′s. (45)

Then

φν(x) ≡ χnlms(x1)χn′l′m′s′(x2) · · ·χn′′l′′m′′s′′(xN ) (46)
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will satisfy equation (35), provided that

βν =
nkn
Z

=
n′kn′

Z
= · · · (47)

and

p2
0 = k2

n + k2
n′ + · · · , (48)

where V0(x) is defined by equation (28). Equations (47) and (48) can be combined to
yield

βν =
p0

Z

(
1
n2 +

1
n′2

+ · · ·
)−1/2

(49)

and

kn =
Zβν
n

=
p0

n

(
1
n2 +

1
n′2

+ · · ·
)−1/2

. (50)

In the lowest approximation, we can represent the ground-state of an atom or ion
by a single determinential Sturmian function. For example, the 1S ground states of
the two-electron isoelectronic series can be represented in the lowest approximation
by the single determinential Sturmian basis function:

φ0(x) =
∣∣χ1sχ1̄s

∣∣ ≡ 1√
2

[
χ1s(1)χ1̄s(2)− χ1s(2)χ1̄s(1)

]
. (51)

Similarly, the 2S ground states of the three-electron isoelectronic series can be approx-
imates by

φ0(x) =
∣∣χ1sχ1̄sχ2s

∣∣ (52)

and the 1S ground states of the four-electron isoelectronic series by

φ0(x) =
∣∣χ1sχ1̄sχ2sχ2̄s

∣∣. (53)

The determinential wave functions shown in equations (51)–(53) have the correct
normalization for many-electron Sturmians (i.e., the normalization required by equation
(13)). To see this, we can make use of the Slater–Condon rules, which hold for the
diagonal matrix elements of

V0(x) = −
N∑
j=1

Z

rj
(54)

because of equation (45). From the Slater–Condon rules, and from equations (42)–(45),
(51)–(53) and (54), it follows that

− 1
p0

∫
dx |φ0(x)|2V0(x) =−

∑
µ

1
p0

∫
dτ1 |χµ(1)|2

(
−Z
r1

)
=

1
p0

∑
n

k2
n

(nkn/Z)
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=
p0

β0
= Z

(
1
n2 +

1
n′2

+ · · ·
)1/2

. (55)

In our example,

V (x) = V0(x) + V ′(x), (56)

where V ′(x) is the interelectron repulsion term:

V ′(x) =
N∑
i>j

N∑
j=1

1
rij
. (57)

Again making use of the Slater–Condon rules, we find that

− 1
p0

∫
dx |φ0(x)|2V ′(x) =− 1

p0

∑
µ′>µ

∑
µ

∫
dτ1

∫
dτ2

[
|χµ(1)|2|χµ′(2)|2

− χ∗µ(1)χµ′ (1)χµ(2)χ∗µ′ (2)
] 1
r12
≡ T ′0,0. (58)

For the isoelectronic series of atoms and ions whose wave functions can be rep-
resented in a crude approximation by the many-electron Sturmians shown in equa-
tions (51)–(53), the interelectron repulsion term becomes, respectively, for the 2-
electron series:

T ′0,0 =− 1
p0(4π)2

∫
d3x1

∫
d3x2

1
r12
|R10(r1)|2|R10(r2)|2, (59)

for the 3-electron series:

T ′0,0 =− 1
p0(4π)2

∫
d3x1

∫
d3x2

1
r12

[
|R10(r1)|2|R10(r2)|2

+ 2|R10(r1)|2|R20(r2)|2 −R10(r1)R20(r1)R10(r2)R20(r2)
]
, (60)

and for the 4-electron series:

T ′0,0 =− 1
p0(4π)2

∫
d3x1

∫
d3x2

1
r12

[
|R10(r1)|2|R10(r2)|2

+ 4|R10(r1)|2|R20(r2)|2 + |R20(r1)|2|R20(r2)|2

− 2R10(r1)R20(r1)R10(r2)R20(r2)
]
. (61)

The interelectron repulsion integrals in equations (59)–(61) can be evaluated by means
of the relationship

1
r12

=
1

2π2

∫
d3k

k2 eik·(x1−x2), (62)
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from which we obtain (for example)

1
(4π)2

∫
d3x1

∫
d3x2

1
r12
|R10(r1)|2|R10(r2)|2

=
1

2π2(4π)2

∫
d3k

k2

∫
d3x1 eik·x1 |R10(r1)|2

∫
d3x2 e−ik·x2 |R10(r2)|2. (63)

Expanding the plane waves in terms of spherical harmonics and spherical Bessel func-
tions, we obtain

1
4π

∫
d3x1 eik·x1 |R10(r1)|2 =

∫ ∞
0

dr1 r
2
1|R10(r1)|2j0(kr1)

= 4k3
1

∫ ∞
0

dr1 r
2
1e−2k1r1j0(kr1)

=
16k4

1

(k2 + 4k2
1)2

(64)

and, similarly,

1
4π

∫
d3x2 e−ik·x2 |R10(r2)|2 =

16k4
1

(k2 + 4k2
1)2
. (65)

In equations (64) and (65), we have made use of the properties of spherical Bessel
functions, studied by Geller et al. [17,19]. These authors derived recursion relations
for integrals of the form

Jjl(k, ζ) ≡
∫ ∞

0
dr rje−ζrjl(kr). (66)

The most simple of these integrals is

J10(k, ζ) ≡
∫ ∞

0
dr re−ζrj0(kr) =

1
k

∫ ∞
0

dr e−ζr sin(kr), (67)

which can be evaluated by elementary integration, yielding

J1,0(k, ζ) =
1

k2 + ζ2 . (68)

The other integrals can be derived from J1,0 by means of the recursion relations

Jl+1,l(k, ζ) =
2lk

k2 + ζ2Jl,l−1(k, ζ) (69)

and

Jj+1,l(k, ζ) = − ∂

∂ζ
Jj,l(k, ζ). (70)
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Thus, for example, we find that

J2,0(k, ζ) =
2ζ

(k2 + ζ2)2 , (71)

J3,0(k, ζ) =
2(3ζ2 − k2)
(k2 + ζ2)3 , (72)

J2,1(k, ζ) =
2k

(k2 + ζ2)2 , (73)

J3,1(k, ζ) =
8kζ

(k2 + ζ2)3 , (74)

and so on. Combining equations (63)–(65) and integrating over dΩk, we obtain

1
(4π)2

∫
d3x1

∫
d3x2

1
r12
|R10(r1)|2|R10(r2)|2 =

2
π

∫ ∞
0

dk

(
4k2

1

k2 + 4k2
1

)4

. (75)

Since the integrand on the right-hand side of equation (75) is an even function
of k, we can divide by 2 and let the integral run from −∞ to +∞. If we close the
contour in the upper half of the complex k-plane, then Cauchy’s integral theorem tells
us that the value of the integral is 2πi times the sum of the residues at the singular
points within the contour. In the case of equation (75) the only singularity within the
contour is a 4th-order pole at k = 2ik1; and we obtain, with the help of Mathematica,

1
(4π)2

∫
d3x1

∫
d3x2

1
r12
|R10(r1)|2|R10(r2)|2 =

5
8
k1 (76)

and, similarly,

1
(4π)2

∫
d3x1

∫
d3x2

1
r12
|R20(r1)|2|R20(r2)|2 =

77
256

k2, (77)

1
(4π)2

∫
d3x1

∫
d3x2

1
r12
|R10(r1)|2|R20(r2)|2 =

34
81
k2, (78)

1
(4π)2

∫
d3x1

∫
d3x2

1
r12

R10(r1)R20(r1)R10(r2)R20(r2) =
32

729
k2, (79)

where we have made use of the fact that, from equation (50), k1 = 2k2. The inte-
grals shown in equations (55), (59)–(61) and (76)–(79) are the ones which we need
to solve the Sturmian secular equations for the 2-electron, 3-electron and 4-electron
isoelectronic series of atoms and ions in the crudest approximation. Substituting the
integrals into equation (23) (where the summation disappears because only a single
basis function is used), we obtain, respectively, for the 2-electron series:

p0 =
√

2
[
Z −

(
1
2

) (
5
8

)]
, (80)
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for the 3-electron series:

p0 = 3
2Z −

(
2
3

) (
5
8

)
−
(

2
3

) (
34
81

)
+
(

1
3

) (
32

729

)
, (81)

and for the 4-electron series:

p0 =
√

5
2

[
Z −

(
2
5

) (
5
8

)
−
(

1
5

) (
77
256

)
−
(

4
5

) (
34
81

)
+
(

2
5

) (
32
729

)]
. (82)

Figure 1 shows the Clementi’s values for the ground state energies of the 3-
electron isoelectronic series (points) compared with a smooth curve showing the ener-
gies derived from equation (81) through the relationship E = −p2

0/2, while figure 2
shows a similar comparison for the 4-electron series. Since, as can be seen from the
figures, even the crudest representation of the wave function as a single many-electron
Sturmian gives reasonably accurate results, it is interesting to ask whether better ac-
curacy can be achieved by using a larger set of many-electron Sturmians. As has
been pointed out by Aquilanti and Avery [1], generalized potential harmonics (analo-
gous to the potential harmonics introduced into nuclear physics by Fabre de la Ripelle
[10,12–14]), can be constructed from many-particle Sturmians in the following way:
The Schrödinger equation in the form shown in equation (22) can be iterated starting
with some zeroth-order trial function. For the three isoelectronic series which we are
using as examples, it is appropriate to let the zeroth-order wave functions be the ones
shown in equations (51)–(53). If we let ψ1(x) represent the first-iterated wave function,
and if we make explicit the fact than ν is not a single quantum number, but a set of
quantum numbers, we obtain

ψ1(x) =− 1
p2

0

∑
ν1,ν2,...

φν1,ν2,...(x)
∫

dx′ φ∗ν1,ν2,...(x
′)V (x′)φ0(x′)

=− 1

p2
0

∑
ν1

fν1(x), (83)

where

fν1(x) ≡
∑
ν2,...

φν1,ν2,...(x)
∫

dx′ φ∗ν1,ν2,...(x
′)V (x′)φ0(x′). (84)

If we let ν1 stand for the the quantum number (or numbers) on which βν depends
while ν2, ν3, ... stand for the minor quantum numbers, then, apart from a normalization
constant, the functions fν1(x) shown in equation (84) are the generalized potential
harmonics of Aquilanti and Avery. Clearly they contribute importantly to the true wave
function, since the first-iterated wave function can be expressed entirely in terms of
them. The energies of a series of simple atoms and ions were calculated by Aquilanti
and Avery [1] using a basis set of only four generalized potential harmonics. The
energy values calculated by Aquilanti and Avery represent a considerable improvement
over the Hartree–Fock limit [11], roughly half the correlation energy being recovered,
and it seems likely that higher accuracy could be achieved by using a larger number
of potential harmonics.
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Figure 1. Ground-state energies in Hartrees for ions and atoms in the 3-electron series, Li, Be+, B2+,
C3+, N4+, O5+, F6+, Ne7+, Na8+, and Mg9+, calculated from equation (81) through the relationship

E = −p2
0/2, compared with Clementi’s values (dots, [11]).

Figure 2. Ground-state energies for the 4-electron series, Be, B+, C2+, etc., calculated from equation
(82) (smooth curve), compared with Clementi’s values (dots, [11]).

7. Many-electron Sturmians for molecules

If we wish to apply the formalism outlined in equations (23) and (28)–(38) to
molecules, then we can let V0(x) be the nuclear attraction potential produced by nuclei
with positive charges Za located at the points Xa, while, as before, V ′(x) will be the
interelectron repulsion potential. Then the potential experienced by a single electron
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will then be

v(xj ) = −
∑
a

Za
|xj − Xa|

. (85)

Momentum-space methods, pioneered by Fock, Shibuya, Wulfman, Judd, Koga,
Aquilanti and others [3–8,15,16,20–22], provide us with an elegant method for solving
the one-electron equation[

∆j − k2
µ

]
ϕµ(xj ) = 2bµkµv(xj )ϕµ(xj), (86)

where v(xj) is the single-electron nuclear attraction potential shown in equation (85).
To obtain these solutions, we let

ϕtµ(p) ≡ 1
(2π)3/2

∫
d3xj e−ip·xjϕµ(xj) (87)

and

χtnlm(p) ≡ 1
(2π)3/2

∫
d3xj e−ip·xjRnl(rj)Ylm

(
x̂j
)
, (88)

where the functions Rnl(rj) are the hydrogenlike Sturmian wave functions defined by
equation (41) with kn = kµ for all the functions in the set. From equations (9) and
(42), and from the relationship[

1
rj

]t
≡ 1

(2π)3/2

∫
d3xj e−ip·xj 1

rj
=

√
2
π

1
p2 (89)

it follows that the Fourier-transformed hydrogenlike Sturmians obey the integral equa-
tion (

p2 + k2
µ

)
χtnlm(p) =

nkµ
π2

∫
d3p′

1
|p− p′|2χ

t
nlm(p′). (90)

Remembering the momentum-space orthonormality relations (14), from which it
follows that ∫

d3p′
(
p′2 + k2

µ

2k2
µ

)
χt∗n′l′m′(p

′)χtnlm(p′) = δn′nδl′lδm′m, (91)

we can see that it is possible to represent the kernel of the integral equation (90) in
the form

1
π2

1
|p− p′|2 =

(p2 + k2
µ)(p′2 + k2

µ)

2k2
µ

∑
n′l′m′

1
n′kµ

χtn′l′m′(p)χt∗n′l′m′(p
′) (92)
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because, if we substitute the expansion of equation (92) into the right-hand side of (90),
we obtain the left-hand side. The Fourier transform of the nuclear attraction potential
shown in equation (85) is

vt(p) = −
√

2
π

∑
a

Za
p2 eip·Xa (93)

so that

vt(p− p′) = −
√

2
π

∑
a

Za
|p− p′|2 ei(p−p′)·Xa. (94)

Combining (9), (86), (92) and (94), we obtain

ϕtµ(p) = bµ
∑

a′n′l′m′

√
Za′

n′
eip·Xa′χtn′l′m′(p)

×
∫

d3p′
(
p′2 + k2

µ

2k2
µ

)√
Za′

n′
e−ip′·Xa′χt∗n′l′m′(p

′)ϕtµ(p′) (95)

or

ϕtµ(p) = bµ
∑
τ

ξτ (p)
∫

d3p′
(
p′2 + k2

µ

2k2
µ

)
ξ∗τ (p′)ϕtµ(p′), (96)

where τ stands for the set of indices a,n, l,m, and where

ξτ (p) ≡
√
Za
n

eip·Xaχtnlm(p). (97)

We now let

ϕtµ(p) =
∑
τ

ξτ (p)Cτ ,µ. (98)

Then (96) will be satisfied provided that∑
τ

[
Kτ ′,τ − b−1

µ δτ ′,τ
]
Cτ ,µ = 0, (99)

where

Kτ ′,τ ≡
∫

d3p

(
p2 + k2

µ

2k2
µ

)
ξ∗τ ′(p)ξτ (p). (100)

The integrals Kτ ′,τ for the first few values of n, l and m are shown in table 1.
Having found solutions to the one-electron equations (86), we can build up many-
electron Sturmians from the spin-up and spin-down functions:

ϕµ(j)≡ϕµ(xj)α(j),

ϕµ̄(j)≡ϕµ(xj)β(j). (101)
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Table 1
This table shows the first few values of the Shibuya–Wulfman integrals, Sτ ′,τ , which are related to the

integrals defined in equation (100) by Kτ ′ ,τ =
√
Za′Za/(n′n)Sτ ′,τ . The vector s = (s1, s2, s3) is

defined by s = kµ(Xa −Xa′ ), so that s = kµR, where R is the internuclear separation.

τ ′ τ = 1s τ = 2s τ ′ τ = 2p1

1s (1 + s)e−s −2s2e−s/3 2p1 (3 + 3s+ s2 − s2
1 − ss2

1)e−s/3

2s −2s2e−s/3 (3 + 3s− 2s2 + s3)e−s/3 2p2 s1s2(1 + s)e−s/3

2pj 2sj(1 + s)e−s/3 sj(1 + s− s2)e−s/3 2p3 s1s3(1 + s)e−s/3

For example, the ground state of the hydrogen molecule can be represented in a
rough approximation by a basis set consisting of two determinential Sturmians:

φ1(x) = |ϕgϕḡ| ≡ ϕg(x1)ϕg(x2)
1√
2

[
α(1)β(2) − α(2)β(1)

]
,

(102)
φ2(x) = |ϕuϕū| ≡ ϕu(x1)ϕu(x2)

1√
2

[
α(1)β(2) − α(2)β(1)

]
,

where g and u denote respectively the σg1s gerade and the σ∗u1s ungerade solutions
to equation (86), with

v(xj ) = − 1
|xj − X1|

− 1
|xj − X2|

. (103)

These one-electron solutions can be found by diagonalizing the matrix Kτ ′,τ

(equations (97)–(100)), and the one-electron energies thus obtained are shown in fig-
ure 3. The Sturmain secular equation (23), then requires that∣∣∣∣T1,1 − p0 T1,2

T2,1 T2,2 − p0

∣∣∣∣ = 0, (104)

where

Tν′,ν =
p0

βν
δν′,ν −

1
p0

∫
dx

1
r12

φ∗ν′φν . (105)

With the help of equations (37), (102) and (105), we can rewrite (104) in the form∣∣∣∣∣
√

2b−1
g + T ′1,1 − p0 T ′1,2

T ′2,1

√
2b−1
u + T ′2,2 − p0

∣∣∣∣∣ = 0, (106)

where we have assumed that φ1 and φ2 are normalized according to the requirements
of equations (13) and (14), and where

T ′1,1 ≡ −
1
p0

∫
dx

1
r12
|ϕg(x1)|2|ϕg(x2)|2,
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Figure 3. One-electron energies, εµ = −1/(2b2
µ), in Hartrees, as functions of the internuclear separation,

R, in atomic units, for an electron moving in the field of two protons. The curves were obtained by
solving the one-electron secular equation (99). The lowest curve corresponds to the σg1s state, while

the next-lowest corresponds to σ∗u1s.

T ′2,2≡−
1
p0

∫
dx

1
r12
|ϕu(x1)|2|ϕu(x2)|2,

T ′1,2 = T ′2,1≡−
1
p0

∫
dx

1
r12

ϕg(x1)ϕu(x1)ϕg(x2)ϕu(x2). (107)

If we wish to obtain a rough picture of the behaviour of the roots of equation (106),
we can represent the interelectron repulsion integrals by the approximation

T ′1,1 ≈ T ′2,2 ≈ − 1
2
√

2

[
5
8 + f (s)

]
,

T ′1,2 = T ′2,1 ≈ − 1
2
√

2

[
5
8 − f (s)

]
, (108)

where

s ≡ kµR =
p0√

2
|X1 − X2| (109)

and

f (s) ≡ 1
s
−
(

24 + 33s + 18s2 + 4s3

24s

)
e−2s. (110)

The reasoning behind the approximation shown in equation (108) is as follows:
The σg1s one-electron molecular Sturmian can be represented approximately by

ϕg(xj) ≈ N
[
χ1s(xj − X1) + χ1s(xj − X2)

]
, (111)
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Figure 4. The ground-state electronic energy, −p2
0/2, and the total energy, −p2

0/2 + 1/R, for the
H2 molecule as functions of the internuclear separation, R, calculated by solving the Sturmian secular

equation (106).

where N is a normalization constant chosen in such a way that φ1 fulfills equations
(13) and (14). In the united-atom limit, X1 = X2 = 0, N = 1/2, ϕg(xj) = χ1s(xj)
and, making use of our previous result for helium, we obtain

T ′1,1 = − 1
p0

∫
dx

1
r12

∣∣χ1s(x1)
∣∣2∣∣χ1s(x2)

∣∣2 = − 5

8
√

2
. (112)

In the separated-atom limit, |X1 − X2| → ∞, N = 1/
√

2 and

T ′1,1 =− 1
4p0

∫
dx

1
r12

∣∣χ1s(x1 −X1) + χ1s(x1 − X2)
∣∣2

×
∣∣χ1s(x2 − X1) + χ1s(x2 − X2)

∣∣2 = − 1

2
√

2

[
5
8

+
1
s

]
. (113)

It can be seen that the approximation for T ′1,1 in equation (108) yields exact
values both in the united-atom limit and in the separated-atom limit; and these two
limits are joined by a smooth curve derived by means of the Mullikin approximation.
The derivation of the other approximate interelectron repulsion integrals is similar; but
it should be noted that T ′2,2 is exact only in the separated-atom limit. For calculat-
ing the ground state of the hydrogen molecule, this defect does not matter, since φ2

does not enter the ground-state wave function appreciably as the united-atom limit is
approached. Figure 4 shows the electronic energy and total energy of the hydrogen
molecule ground state as functions of the internuclear separation, R, calculated using
the approximate interelectron repulsion integrals of equation (108). The calculation
gives an equilibrium bond distance of R = 1.46 atomic units which can be compared
with the experimental value, R = 1.40 atomic units. It seems promising that the
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rough calculation outlined above gives reasonable results, since the accuracy of the
calculation could undoubtedly be improved by using more Sturmian basis functions
and by improving the approximation for the interelectron repulsion integrals. The
special feature introduced by using many-electron Sturmians in molecular calculations
is the automatic optimization of the orbital exponents kµ through equations (23), (38)
and (99). On the hand, the size parameter of the system is not known until the
calculation is complete: In the example of H2 discussed above, we pick a value of s;
we solve the secular equations (99) and (23); and finally, from (38) and s = kµR, we
obtain the value of R to which the electronic energy E = −p2

0/2 corresponds. This
delay in the knowledge of R is not a disadvantage, however, if we wish to generate
curves such as the ones shown in figures 3 and 4. In conclusion, it seems likely that
the use of many-electron Sturmians will prove to be a useful alternative to the usual
methods for treating electron correlation.

Many-particle Sturmians were discussed by Avery and Herschbach in references
[6] and [9]; but in these references, the basis sets were constructed from solutions to the
d-dimensional hydrogenlike wave equation. The new feature introduced in reference
[1] and generalized in the present paper is a method for constructing many-electron
Sturmians based on the actual external potential experienced by a set of electrons.
The convergence then becomes very much more rapid, only a modest number of
basis functions being needed for an accurate representation of a many-electron system.
Because of this rapid convergence, because of the elimination of the kinetic energy
term, the avoidance of the Hartree–Fock approximation, and the automatic optimization
of the orbital exponents, direct solution of the many-electron Schrödinger equation
using many-electron Sturmians may one day replace the SCF approach in quantum
chemistry.
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